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Abstract: The devastating impact of 
earthquakes on infrastructure, particularly 
elevated water tanks, underscores the 
limitations of static analysis in structural 
engineering. These tanks, vulnerable due 
to their height and the concentration of 
mass at the top, demand a nuanced 
understanding of their dynamic behaviour, 
especially considering fluid-structure-soil 
interactions during seismic events. Failures 
in historical earthquakes have often been 
traced back to inadequate structural codes 
and poor design, highlighting the need for 
realistic seismic analysis. This study 
investigates the seismic performance of 
circular elevated water tanks using 
STAAD Pro for numerical modelling, 
focusing on the effects of soil types, water 
levels, and bracing configurations on 
seismic resilience. Through experimental 
design analysis, it reveals significant 
influences of soil compliance, water 
content, and bracing systems on key 
seismic indicators like base shear, 
displacement, and overturning moment. 
The research advocates for advanced 
seismic design strategies, incorporating 
these factors to enhance the earthquake 
readiness of water tanks. 

Key words: Elevated water tank, Seismic 
analysis, Fluid-structure interaction, Soil-
structure interaction, STAAD 

1. Introduction  

The critical role of water tanks in ensuring 
a stable water supply in varied 
geographical settings, especially in regions 
like India, where water scarcity becomes 

pronounced outside the monsoon season, 
cannot be overstated. Given their 
importance in storing and distributing 
water for residential, commercial, and 
emergency uses, the seismic resilience of 
these structures, particularly elevated 
water tanks, is of paramount concern. 
Elevated water tanks, characterized by 
their raised design for gravity-fed water 
supply systems, pose unique challenges in 
seismic design due to their vulnerability to 
damage from earthquakes. This 
vulnerability stems from the combination 
of a heavy mass concentrated at the top 
and a relatively slender supporting 
structure below, along with complex 
interactions between the tank structure, the 
water it holds, and the underlying soil. 

The devastating earthquake in Nepal in 
2015 highlighted the susceptibility of 
water supply infrastructures, including 
elevated tanks, to seismic forces, 
underscoring the imperative for 
incorporating earthquake-resistant features 
in their design and construction. The 
seismic performance of these tanks is 
crucial not only for maintaining water 
supply post-disaster but also for preventing 
significant damage and mitigating health 
risks associated with the leakage of stored 
chemicals or water. This introduction 
provides an overview of water tanks, their 
classification, structural features, past 
failures, and the motivation behind 
focusing on their seismic resilience, setting 
the stage for a comprehensive analysis 
aimed at enhancing their design and 
construction practices to withstand seismic 
forces. 
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Table 1Previous Literature   

Author(s) Year Key Findings and Contributions 

Gurkalo et al. 2024 Found that slits in reinforced concrete shafts enhance ductility 
and seismic behavior, especially in tall, slender tanks. 

Holtschoppen and Knoedel 2024 Adapted flat-bottom tank designs for slender tanks, 
demonstrating reductions in seismic base shear and moment. 

Tanmoy Kona 2023 
Introduced a dual-purpose slender tuned sloshing damper (STSD) 
and overhead water tank (OWT) with consistent performance 
despite liquid depth fluctuations. 

Bansode and Datye 2018 
Showed that increasing bracing levels increases base shear and 
moment but reduces lateral displacement and vibration periods in 
Intze-type tanks. 

Chougule et al. 2017 
Identified that increases in the height-to-diameter ratio of tanks 
result in higher base shear, bending moments, and hydrodynamic 
pressure. 

Rai Durgesh C. 2002 Highlighted the vulnerabilities of elevated tanks in seismic 
regions and documented failures in tank staging post-earthquakes. 

Bhadauria and Gupta 2006 
Assessed deterioration in water tank structures due to 
environmental factors like corrosion and provided a damage 
scale. 

Masood Amjad et al. 2008 Examined technological failures in rural water tanks, citing poor 
concrete quality as a cause of distress. 

Dutta et al. 2000 Explored the torsional and lateral stiffness of tank staging and the 
influence of soil-structure interaction on dynamic characteristics. 

Housner 1960 Laid the groundwork for understanding fluid-tank interaction and 
dynamic behavior under seismic loading. 

Livaoğlu and Doğangün 2000 Studied the impact of ground types and the added mass approach 
on seismic behavior, providing simplified design methods. 

Algreane et al. 2011 Investigated elevated tank behavior considering soil and water 
interactions and dynamic responses under seismic loads. 

Omidinasab et al. 2010 Analyzed a concrete water tank using time history analysis for 
different seismic responses. 

Masood Amjad et al. 2008 Examined technological failures in rural water tanks, citing poor 
concrete quality as a cause of distress. 

This study is dedicated to enhancing our 
understanding of the seismic resilience of 
circular elevated water tanks, focusing on 
their behavior under varying conditions. 
The objectives include examining the 
effects of different soil types (hard, 
medium, and soft) and water levels (empty, 
half-full, and full) on their seismic 
performance. Key performance metrics 
such as base shear, maximum resultant 
displacement, and overturning moment 
will be quantified to assess the impact of 
these variables. Through the use of 
statistical analysis and numerical modeling 
in STAAD Pro, the research aims to 
explore the interplay between soil 
compliance, fluid dynamics, and seismic 
forces, identifying the critical factors that 
influence the seismic durability of these 
essential structures. 

2. Modal provision and Output  

2.1 Structural Data  
This study examines the seismic 
performance of 1000 cubic meters 
reinforced concrete circular elevated water 
tank in Delhi, seismic Zone IV. The tank, 
with a 14-meter diameter, 7-meter height, 
and wall thickness of 0.35 meters, features 
top and bottom domes and a conical dome, 
all designed with concrete and steel grades 
of 30 MPa and 415 N/mm², respectively. 
Positioned 16 meters above the 
foundation, it is supported by eight 
columns and reinforced with four levels of 
bracings. Using STAAD Pro, the analysis 
focuses on the impact of varying water 
levels (empty, half-full, full) and soil types 
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(hard, medium, soft) with four water levels 
(empty, quarter-full, half-full, full). 
Utilizing STAAD Pro, the analysis focused 
on key metrics: shear forces along the x 
and z axes for each tank level, nodal 
displacements in all directions, and forces 

and moments on each node. This 
methodical examination aimed to identify 
the impact of soil conditions and water 
content on the tank’s seismic resilience, 
facilitating the optimization of design for 
enhanced safety and stability 

Table 3 Combination of each condition for seismic analysis 

Condition Soil Type Bracing Type Water condition 
Condition 1 Hard Peripheral Empty 
Condition 2 Hard Peripheral Half 
Condition 3 Hard Peripheral Full 
Condition 4 Medium Peripheral Empty 
Condition 5 Medium Peripheral Half 
Condition 6 Medium Peripheral Full 
Condition 7 Soft Peripheral Empty 
Condition 8 Soft Peripheral Half 
Condition 9 Soft Peripheral Full 
Condition 10 Soft Peripheral + Horizonal Radial Full 
Condition 11 Soft Peripheral + Vertical Diagonal Full 
Condition 12 Soft Peripheral + Vertical Cross Full 

Table 4 Maximum outcomes for each condition 

Condition Bracing 
Type 

Soil 
Type Water condition Base Shear 

(kN) 

Overturning 
Moment 
(kN-m) 

Top 
Displacement 

(cm) 
Condition 1 

Peripheral  

Hard Empty 436.65 8979.53 1.83 
Condition 2 Hard Half 653.03 12685.06 2.72 
Condition 3 Hard Full 790.72 15017.31 3.28 
Condition 4 Medium Empty 593.84 12212.16 2.49 
Condition 5 Medium Half 888.12 17251.71 3.70 
Condition 6 Medium Full 1075.38 20423.55 4.46 
Condition 7 Soft Empty 629.21 12939.41 2.64 
Condition 8 Soft Half 1090.55 21184.07 4.54 
Condition 9 Soft Full 1320.51 25078.92 5.48 

Table 5Consolidated results for Peripheral. Radial, Diagonal and Cross Bracings 

Bracing Type Soil Type Water 
condition 

Base Shear 
(kN) 

Overturning 
Moment  
(kN-m) 

Top 
Displacement 

(cm) 
Peripheral Soft Full 1320.51 25078.91738 5.4775 

Horizontal Radial Soft Full 1342.85 25455.45656 5.4614 
Vertical Diagonal Soft Full 1345.24 25488.72709 1.6472 

Vertical Cross Soft Full 1371.35 25922.38495 1.2932 

 

4. RESULTS AND DISCUSSION 
4.1 Impact of Soil Type and Water 

Condition: 
(a) Hard Soil Conditions 

In hard soil, an incremental increase in 
base shear, displacement, and overturning 
moment was observed as the tank's water 

level rose from empty to full. This 
increment suggests that the presence of 
water significantly affects the seismic 
response, primarily through the added 
mass and the hydrodynamic pressure 
exerted on the tank walls. Hard soil, with 
its relatively higher stiffness, transmits 
seismic energy more efficiently, resulting 
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in clear differences in seismic response 
based on the tank's fill level. 

(b) Medium Soil Conditions 

The medium soil conditions exhibited a 
marked increase in the seismic response 
parameters as the water level increased, 
indicating a compounded effect of soil 
flexibility and fluid mass. Medium soil's 
lesser stiffness compared to hard soil 
means more energy is absorbed by the soil 
itself, leading to larger displacements and 
forces on the tank structure. The 
intermediate compliance of medium soil 
amplifies the seismic effects, highlighting 
the necessity of considering medium soil's 
unique characteristics in the seismic design 
of tanks. 

(c) Soft Soil Conditions 

Soft soil conditions showcased the most 
dramatic increases in all measured 
parameters across the water conditions. 
The soft soil significantly amplifies the 
seismic response due to its high 
compliance, allowing more pronounced 
movements and stresses on the tank 
structure. The results from soft soil 
conditions emphasize the critical impact of 
soil compliance on seismic behaviour, with 
soft soils presenting the greatest challenge 
in terms of seismic design and mitigation. 

 

Figure 4 Base Shear for different soil and water 
level condition 

 

Figure 5 Overturning Moment for different soil and 
water level condition 

 

 

Figure 6 Top Displacement for different soil and 
water level condition 

The analysis reveals a consistent trend 
across all soil types: as the tank's water 
level increases, so do the base shear, 
displacement, and overturning moment. 
This trend underscores the dual influence 
of fluid mass and soil compliance on the 
seismic behaviour of elevated water tanks. 
The added mass of the water enhances the 
inertial forces during seismic events, while 
the soil type determines the extent to 
which these forces are amplified or 
mitigated. 

Moreover, the maximum resultant 
displacement observations indicate an 
increased susceptibility of the tank to 
seismic-induced movements as the water 
level rises. This susceptibility is most 
pronounced in tanks situated on soft soil, 
underscoring the importance of detailed 
soil investigation and appropriate seismic 
design considerations. 
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In conclusion, this detailed seismic 
analysis highlights the nuanced interaction 
between water mass, soil type, and seismic 
forces. It clearly demonstrates that water 
tanks, especially those on soft soil and at 
full capacity, face the highest risk during 
seismic events. Therefore, understanding 
these dynamics is crucial for the 
development of effective seismic design 
strategies, ensuring the structural integrity 
and safety of elevated water tanks under 
diverse seismic conditions. 

4.2 Impact of Bracing system for full tank 
on soft soil: 
 When evaluating the performance of 
different bracing types for a full water tank 
on soft soil, it's essential to consider the 
implications of higher base shear and 
overturning moment, as well as lower top 
displacement. 

(a) Peripheral Bracing 

Peripheral Bracing represents the reference 
point for this analysis. It has the lowest 
base shear and overturning moment, which 
may be advantageous in seismic situations 
because it could indicate less force being 
transferred to the foundation, potentially 
reducing the risk of foundation failure. 
However, this bracing type also has the 
highest top displacement, which is a 
critical factor to consider. Higher top 
displacements can lead to increased strain 
on the structure and potential damage 
during seismic events, as it indicates more 
movement and less control over the sway 
of the tank. 
(b) Horizontal Radial Bracing 

Horizontal Radial Bracing shows a slight 
increase in base shear and overturning 
moment compared to the peripheral 
bracing. This suggests a small increment in 
the forces that the foundation must resist 
during an earthquake, which could be 
unfavorable if the foundation design 
cannot accommodate these forces. The top 
displacement is nearly the same as with 
peripheral bracing, indicating that this 

design does not substantially improve the 
control of sway at the top of the tank. 
(c) Vertical Diagonal Bracing 

Vertical Diagonal Bracing presents an 
interesting result with a modest increase in 
base shear and overturning moment, 
implying a slight increase in the load on 
the foundation during seismic events. 
However, there's a significant decrease in 
top displacement, which is highly 
beneficial. This reduction indicates that the 
vertical diagonal bracing is effective at 
controlling the movement of the tank's top, 
likely reducing potential damage during 
earthquakes. 
(d) Vertical Cross Bracing 

Vertical Cross Bracing shows the highest 
base shear and overturning moment, which 
may not be favorable since it suggests that 
the foundation is subjected to the highest 
forces among all bracing types considered. 
However, the vertical cross bracing has the 
lowest top displacement, significantly 
reducing the tank's sway during seismic 
events. This characteristic is highly 
desirable as it implies that the bracing is 
very effective at keeping the tank stable at 
its top, which is crucial for maintaining the 
integrity of the tank and connected piping 
during an earthquake. 

In summary, while the base shear and 
overturning moment are generally 
unfavorable when they are higher, the 
significantly reduced top displacement 
seen with Vertical Diagonal and Vertical 
Cross bracing types may outweigh these 
concerns. It suggests that these bracing 
systems offer improved control over the 
tank's movement, which is a vital factor in 
seismic resilience. The choice of bracing 
should, therefore, balance the need for a 
stable foundation capable of handling 
increase d forces with the critical 
requirement to minimize top displacements 
during seismic activity. 
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Figure 7 Base shear comparison for different types 

of Bracing 

 
Figure 8 Overturning moment comparison for 

different types of Bracing 

 
Figure 9 Top Displacement comparison for 

different types of Bracing 

Conclusion  
The study's comprehensive analysis, 
reinforced by ANOVA results, 
conclusively demonstrates the significant 
impact of soil type and water condition on 
the seismic behavior of circular elevated 
water tanks. The findings articulate a clear 
statistical significance of these factors in 
influencing base shear, top displacement, 
and overturning moment, which are critical 
parameters in assessing a structure's 
seismic resilience. 

• Water condition (full, half, empty) 
plays a significant role in 
influencing the seismic response of 
the tanks, showing a substantial 
impact on base shear, overturning 
moment, and displacement. 

• Soil type, despite being statistically 
insignificant in the ANOVA 
analysis, still accounts for a notable 
percentage of variability in seismic 
response parameters and cannot be 
ignored in design. 

• Different bracing types affect 
seismic performance variables of 
water tanks differently. The choice 
of bracing impacts the base shear, 
overturning moment, and top 
displacement in various ways. 

• Vertical bracing systems, 
particularly vertical diagonal and 
vertical cross, significantly reduce 
top displacement, which is critical 
for the stability of the tank during 
seismic events. 

• Higher base shear and overturning 
moments are observed with more 
robust bracing types. While they 
indicate a stronger structure, they 
also imply more substantial forces 
acting on the foundation during 
seismic events. 
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